6-6 Videos Guide

6-6a

- Polar equation of a conic section
- Horizontally oriented
- $r=\frac{e d}{1 \pm e \cos \theta}$
- Vertically oriented
- $r=\frac{e d}{1 \pm e \sin \theta}$
- Description of the eccentricity e
- $e=\frac{\text { distance from a point on the curve to the focus }}{\text { distance from the point to the directrix }}$
- Determining a conic section from the eccentricity e
- Parabola if $e=1$
- Ellipse if $e<1$
- Hyperbola if $e>1$

6-6b

Exercises:

- Write a polar equation of a conic with the focus at the origin and the given data.
- Parabola, directrix $x=-3$
- Ellipse, eccentricity $0.6, \quad$ directrix $r=4 \csc \theta$
- Find the eccentricity, (b) identify the conic, (c) give an equation of the directrix, and (d) sketch the conic.
$r=\frac{1}{2+\sin \theta}$

6-6c
Exercise:

- Find the eccentricity, (b) identify the conic, (c) give an equation of the directrix, and (d) sketch the conic.
$r=\frac{5}{2-4 \cos \theta}$
6-6d
- Polar equations of orbits
- $r=\frac{a\left(1-e^{2}\right)}{1+e \cos \theta^{\prime}}$, where a is the length of the semimajor axis
- Perihelion (closest) distance: $r=a(1-e)$
- Aphelion (farthest) distance: $r=a(1+e)$

Exercise:

- Jupiter's orbit has eccentricity 0.048 and the length of the major axis is $1.56 \times 10^{9} \mathrm{~km}$. Find a polar equation for the orbit.

